Advanced FPGA Topics

Jem Berkes

Previously at Altera (Toronto), Galois (Portland)

Review of basics

ASIC vs FPGA

- Fixed, permanent logic
- Distinct blocks/functions

- Array of generic blocks
- Turn on/off the blocks

Compilation (EDA)

- Synthesis: transform to low-level gate description
- "Place and route" or Fitting ... NP-Hard!
 - Place logic blocks, and wire them together
- Place and route objectives
 - Minimize wiring
 - Maximize circuit speed (relates to signal delay)
 - Preserve resources, minimize power usage, ...

Place & Route – Altera

Place & Route – Xilinx

Timing

Timing Analysis

- Given a <u>specific</u> FPGA model, and
 - Voltage bounds
 - Temperature bounds
- Do signals change in valid time bounds?

Timing Analysis

- Pass/Fail
- May fail if
 - Signals are too far apart on chip (delays)
 - One sub-circuit is too slow
- Often will give F_{max}
 - Maximum clock frequency where timing passes
- Structure of design impacts F_{max}

Timing Simulation

- Like functional simulation, but includes
 - Propagation delays
 - Timing effects
- Note: simulating a large design can be very slow
 - FPGA will actually run much faster at-speed
 - Sometimes better to just run it live!

Supplementing Simulations

- Can test a live design on the FPGA
- SignalTap (Altera) or ChipScope (Xilinx)
 - Interface to read/write values
- Or self-test
 - PRNG to auto-generate many inputs
 - Stress test
 - Automatically check result / error

Optimization Problem

- Many constraints and tradeoffs!
- Design might not even fit on your chip
- Speed / Area / Power tradeoffs
 - Can compile a faster design, but area gets bigger
 - Bigger area uses more power
 - Low power designs are usually slower

Speed / Area / Power Trade-off

Area (logic blocks)

low power high power

Low Power Design

Static Power

- Transistor leakage and bias
- Constant / standby

Dynamic Power

- Due to switching
 - Charging capacitive loads... all logic!
- Increases with frequency and toggle rate

$$P = f C_L V_{DD}^2$$

Sources of Dynamic Power

- Anything that's switching
 - Clock networks
 - Logic blocks, flip-flops
 - Routing wires, interconnects
 - RAM, DSP blocks

Total Power

More toggling activity

Low Power Design

- 1. Reduce size of design
- 2. Try different algorithm or structure
- 3.Gate power-hungry circuits; clock enable (CE)
- 4.Use embedded (pre-built) blocks

Very good tips in:

"Quartus Power Analysis and Optimization"

1. Reduce size of design

- Less flip-flops, routing wires, etc.
- Avoid redundant logic
- Avoid large fan-outs and fan-ins
 - Mess of wires

2. Try different algorithm/structure

- Might restructure parts of your design
- Pipelining often saves power
 - Glitching problem, especially XOR

Timing Diagram for the 2-Input XOR Gate

Pipelining

Add registers

Pipelined

Pipelining

 M_1

 R_5

 R_6

 R_7

 R_1

 R_2

 R_3

 R_4

 a_i

 b_i

Ci-

 d_i

- Non-pipelined design
- Glitches propagate

This **may** reduce power, if glitching was severe

R₉

 A_1

> yi

3. Gate power-hungry circuits

- Only enable parts when needed
- RAM: use clock enable, read/write enable
- Use the clock enable (CE) ports on registers
 - Automatic if written a certain way

```
always @(posedge clk)
begin

if (enable)
    reg <= value;
    else
    reg <= reg;
    end
end</pre>
Gate all actions on single enable signal
```

4. Use embedded blocks

- Many embedded blocks exist
- Processors
 - Try hard or soft processor, e.g. control logic
- DSP
 - dedicated multiplier instead of "regular logic"

CAD System

- Capable of some power optimizations
 - If you enable in menus
- Try different pin assignments
 - Fitter might reduce routing interconnects
- Look at report on resource utilization

Clocks

Clock Distribution

- Clock pins bring external clock into FPGA
- Clock signals are special
 - Get routed onto "clock networks"
 - Have buffers to support fan-out
 - Symmetric wiring for low skew
 - Special connectivity

Global Clock Network

Can reach everywhere on the FPGA

Regional/Local Clock Network

Used within a quadrant or region

Clock Network Considerations

- You must use dedicated clock pins/networks
 - For any resource that needs clocks
- Global clocks are the most useful
 - Reach everywhere
 - But can use significant power
 - Long wires
 - Lots of buffers