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1. Introduction to hardware attacks

Most research in cryptography examines the mathematics of cryptographic 
algorithms, ciphers, and protocols.  Since the classical focus of cryptography has 
been communication security, more attention has been given to attacks on the 
information flowing over a channel rather than the endpoint hardware.  However, 
the hardware which implements the cryptography is of course an important part 
of the overall system and deserves just as much scrutiny.

Rapid  advancements  in  computer  hardware  technology  have  resulted  in 
smaller, faster and cheaper devices which have become commodity items.  As a 
result, cryptographic hardware is now widely deployed in everything from pay TV 
units  to  cell  phones  to  prepaid  cards  and  access  cards  (smartcards).   These 
devices often store private keys or other sensitive data, so compromise of this 
private data or the hardware which guards it can have disastrous implications 
including loss of privacy, forged access, or direct monetary theft.

Because  the  cryptographic  devices  are  easily  obtainable,  attackers  can 
study the internal structure of the hardware to learn specific details about the 
implementations.  Knowledge of the implementation may then be used to carry 
out  attacks  on  the  system without  directly  attacking  the  mathematics  of  the 
algorithms.  In other words, even when totally secure algorithms and protocols 
are employed, the attacker might still be able to learn valuable secret information 
due to the implementation of the hardware.  Even if secret information can not be 
learned, attackers may be able to disrupt the hardware or deny service leading to 
other kinds of failures in the security system.

This paper examines practical  “implementation attacks” on cryptographic 



hardware, with a focus on embedded systems and portable hardware.  Attack 
feasibility and difficulty, along with basic countermeasures are also compared.

1.1. Context: embedded systems and portable hardware

While there are many kinds of computer hardware that use cryptographic 
processing,  embedded  systems  and  portable  hardware  pose  some  unique 
challenges.  In the following discussion of attack styles, embedded systems and 
other  small,  portable  hardware will  be the focus.   Consider  the following two 
examples of hardware which have been the targets of implementation attacks:

Smartcards.  Thin credit card-like cards with embedded ICs. The cards do 
not carry their own power source, as the contacts on the card allow the card 
readers (ATMs, pay telephones, Points of Sale) to both power and communicate 
with the card.  The cards typically have sensitive information such as private keys 
in  non-volatile  storage,  and  communicate  with  a  card  reader  using  standard 
protocols to encrypt and authenticate.

Cell phones and PDAs.  These devices have more computational power and 
wireless communications capabilities.  In order to obtain network service, they 
must authenticate securely over an insecure and easily manipulated channel.  The 
devices  often  store  and  communicate  private  information  belonging  to 
consumers, service providers and manufacturers.

The noteworthy aspect of security as it relates to embedded systems and 
portable hardware is the extremely hostile environment in which the hardware is 
used.  The designer can not assume any physical security exists, as is the case 
with most other kinds of computer hardware.  Not only can the hardware itself fall 
into the hands of an attacker, but other computer equipment which connects to 
the embedded system might be under the control of an attacker.  For instance, a 
smartcard carrying financial information might be connected to a card reader (for 
instance, Point of Sale terminal or ATM) that is under the control of an attacker.

The hostile environment is made more complicated by the fact that there 
are potentially numerous attackers or threats depending on the viewpoint.  In 
some applications (for instance, multimedia content distribution) the customer 
and owner of the device is treated as a threat since they may want to use digital 
content in  a way that is  not  permitted.   In  the application of  smartcards for 
financial transactions, neither the holder of the card nor the card reader can be 
trusted by the bank.  A cellphone provider's primary concern is restricting access 
to paid subscribers, while the end user's concern of communication privacy is a 



different consideration completely.

The way in which embedded systems are deployed for commercial use also 
adds a practical complication for security.  Because much of the hardware (for 
instance, card readers) have already been deployed, constraints on backwards 
compatibility mean that users often have to settle for less-than-optimal security. 
While crypto algorithms and protocols continually evolve, it is no simple matter to 
deploy millions of new embedded units to subscribers.

Finally,  the  hardware  resource  limitations  of  embedded systems lead to 
difficult security design considerations.  Because of the restrictions on size, cost, 
and  battery  power,  these  computers  have  limited  computational  power  and 
storage space.  The software which implements cryptography has to be efficient 
and fit in minimal storage.  Because cryptographic algorithms are very power-
hungry, designers do not have the freedom to implement very computationally 
intensive crypto processing.  There is a tradeoff between computational security 
requirements and the resources of the embedded system.  Figure 1 illustrates the 
serious energy burden of cryptography in an example wireless device.

Figure 1: Energy consumption profile from a 
sample wireless device (source: Karri and 
Mishra, 2002)



1.2. Degree of security

The types of implementation attacks which will be discussed do not involve 
breaking  mathematical  algorithms.   While  weaknesses  in  common  algorithms 
undoubtedly exist, the implementation attacks exploit  other weaknesses which 
are easier targets.  So while overall security can be compromised by the “weakest 
link”,  including  weak  math,  the  security  of  underlying  algorithms  and 
mathematical theory will be omitted from this discussion.

The focus of implementation attacks is on physical security of the device. 
Unfortunately, there can not be total security when the cryptographic hardware 
(and the keys that are stored in it) are physically in the hands of an attacker. 
While cryptographic hardware such as smartcards are manufactured to be tamper 
resistant, they can never be totally tamper proof.  Given sufficient resources, an 
attacker who has access to semiconductor test equipment can directly observe 
the  private  information  stored  on  the  device.   The  cost  might  be  millions  of 
dollars, making this option infeasible for the majority of attackers.

The degree of security, within the scope of this discussion, therefore refers 
to the time and cost (difficulty) of attacking the system.  Generally speaking, less 
invasive attacks are easier to carry out and pose more of a threat in practise.

1.3. Goals of an attacker

The goals of an attacker can vary substantially depending on the particular 
application.  We can simplify the goals down to three categories: (1) learning 
secrets,  (2)  taking  advantage  of  victim  hardware  without  learning  private 
information, (3) disrupting normal operation or denial of service.

Compromising  private  information,  usually  secret  keys,  has  the  most 
serious  implications  and  has  been  the  focus  of  much  research.   In  a  secure 
cryptosystem, an attacker should not be able to learn anything about the secret 
key or message by observing or manipulating the inputs/outputs to the “black 
box”  crypto  unit.   The  only  method  available  to  the  attacker  must  be  an 
exhaustive search of the full key space.  If any additional information is available 
which reveals even partial information about the secret (for instance, the first few 
bits) then the security has been weakened, as an attacker's search has become 
simplified.  Learning just one bit of a secret key halves the search time!

The  attacks  described  below  are  mostly  of  this  nature.   For  example, 
physical  tampering of  bits  stored in  EEPROM memory (invasive)  might  reveal 



some portion of a secret key and dramatically reduce system security.  Other 
non-invasive techniques,  such as measuring power consumption of the device 
over time, might reveal partial information about the key.  Such “side-channel 
attacks” exploit the fact that some clues about the secrets are revealed through a 
side-channel (power consumption, electromagnetic signals, or even sound).  If 
any clues relating to the secret are learned, the attacker has an advantage.

2. Types of hardware attacks

The following discussion examines three categories of hardware attacks on 
embedded systems: side-channel attacks, fault attacks, and physical tampering. 
While  an  attacker  may  have  any  number  of  goals  in  practice  (see  1.3)  the 
literature in this area typically emphasizes key compromise.  After introducing the 
attacks, the difficulty from the attacker's perspective and countermeasures will be 
examined in section 3.

Note that all of the described attacks are of a practical nature, leading to 
compromise of commonly used cryptographic hardware.  Several example attacks 
are provided to illustrate by example, but many details have been omitted for 
brevity in this broad review.

2.1. Side-channel attacks (non-invasive)

A  side-channel  refers  to  an  avenue  of  information  provided  by  the 
implementation of cryptographic hardware. Examples of side-channels are sound, 
infrared  radiation,  time  delays,  power  consumption,  and  electromagnetic 
radiation.  This “leaked information” may be statistically related to the underlying 
computations or keys, giving clues that are useful to an attacker.  Unlike the 
more invasive techniques that will be covered later, these side-channel attacks 
can  be  carried  out  on  unmodified  hardware  while  it  is  performing  normal 
computations.



2.1.1. Side channel attacks: Timing attacks

This  simple  side-channel  attack,  documented  by  Kocher  in  1996, 
demonstrates how measuring computation time can reveal vital information about 
keys.  Kocher's attack shows how measurements of the time required to perform 
private key operations can reveal fixed Diffie-Hellman exponents, RSA factors, 
and other secret parameters of cryptosystems.  It is assumed that the attacker 
knows  implementation  details  of  the  cryptosystem,  and  the  attack  is  highly 
dependent on the specific implementation.  One simplified example is presented 
here  for  a  modular  exponentiation algorithm used  in  RSA computations, with
m=cdmod n where the attacker wants to find the private key d.

The attack can be crafted to exploit any implementation that does not run 
in fixed time.  For example, a modular exponentiation algorithm which tests one 
bit of a key and branches to either a fast operation (if key bit is 0) or a very slow 
operation (multiplication if key bit is 1) reveals information about the secret key 
along the way.

An attacker can start by guessing the first key bit as 0 or 1, and seeing 
which  hypothesis  results  in  the  strongest  correlation  between  predicted  and 
actual computational time. This is then repeated until the attacker learns all the 
key bits by observing the strongest time correlations among many samples and 
key bit choices.  At the very least, the search space for possible keys is reduced. 
In Kocher's experiments with the RSAREF software toolkit on a 120-MHz Pentium 
computer, only a few thousand trials revealed the 256-bit secret exponent used in 
modular  exponentiation.  The  attack  was  described  as  “computationally  quite 
easy”.

2.1.2. Side channel attacks: Power analysis

The  category  of  power  analysis  attacks  (which  includes  simple  power 
analysis  and  differential  power  analysis)  involve  physical  measurements,  via 
probe,  of  the  device's  current  consumption  versus  time.  The  power  analysis 
attacks rely on a correlation between the current being drawn by the processor 
and the instructions or data being processed.  Assuming a CMOS implementation 
as shown in Figure 2, these changes in current result mainly from the charging 
and discharging of a load capacitance during switching.



In Simple Power Analysis (SPA) attacks, the attacker observes the trace of 
current consumption over time and tries to directly apply it to the underlying 
cryptographic  processing.   Figure  3  shows  a  SPA  trace  from  a  smartcard 
performing a DES operation.  The 16 rounds are clearly visible in this device, and 
higher  resolution  traces  would  even  reveal  additional  characteristics  such  as 
register rotations or even conditional jumps (not shown).

Consider an example analogous to the timing attack described in 2.1.1.  In 
the timing attack, the time taken to compute revealed information about branch 
choices, and therefore secret key bits.  In the SPA example shown in Figure 4, 
the two traces are from identical computations until a branch decision which is 
visible in  cycle 6.  This reveals information about the sequence of  instructions 
being  executed,  and  could  (depending  on  implementation)  lead  to  key 
compromise.   This  is  a  more  detailed  view  of  the  Figure  3  trace,  showing 

Figure 2: Current through CMOS 
inverter (source: Peeters et al., 2006)

Figure 3: SPA trace from typical smartcard showing 16 rounds of DES operation 
(source: Kocher et al, 1999)



individual clock cycles on the processor.

SPA attacks have been used to break implementations of RSA by showing 
the differences between multiplication and squaring operations used in modular 
exponentiation. SPA attacks can also provide other clues to attackers to augment 
other attacks, even if the SPA attack alone can not directly reveal a secret key.

A more powerful kind of power analysis attack is Differential Power Analysis 
(DPA) which relies on statistical tests to isolate a signal of interest from noisy and 
complex power signals on a device. The power of DPA lies in its ability to discover 
useful  information whenever  there is  a  correlation between power traces and 
processed  data,  even  if  the  relationship  between  power  use  and  instruction 
execution is too complex to link directly (as is done with SPA).  Although the 
attacker does not need to know details of how an algorithm is programmed, they 
still must know which algorithm to attack since the differential attack requires a 
known model of cipher behaviour. Using a DPA attack, the attacker can discover a 
group of key bits at once and dramatically reduce the key search space.

The attacker first collects a large number of power traces for thousands of 
encryptions using high speed equipment such as modern digital oscilloscopes with 
high speed A/D capture.  The attacker makes a hypothesis about the key (for 
instance,  guesses  a  subset  of  the  key bits  in  a  certain  round) and uses  this 
hypothesis to calculate the corresponding bits in the “next stage” of computation. 
(This could be the inputs to the next round, in a Feistel-class cipher).  If this 
hypothesis  is  correct,  the  corresponding  bits  at  the  “next  stage”  will  be  as 

Figure 4: SPA trace from two executions on smartcard, diverging at 
cycle 6 upon conditional branch (source: Kocher et al., 1999)



predicted.   If  the hypothesis  is  incorrect,  the resulting bits  will  appear  to be 
random and therefore only match the predicted bits in roughly 50% of test cases.

Various methods can then be used to statistically compare the prediction to 
measurements.   This  allows an attacker  to  discover  when their  hypothesis  is 
correct.  Take for example the original DPA attack described by Kocher, Jaffe, and 
Jun is to find DES keys on smartcards.  The attacker guesses the 6 bit input into 
s-boxes at a specific round and calculates the resulting 4 bits in the next round.

In this attack, some arbitrary bit from the 4 bits in the next-round is used 
to divide the collected power traces into two subsets.  If the original guess was 
wrong, then the two subsets have been randomly selected and the mean power 
will be no different from the main set.  However, if the original guess was correct, 
then  the  choice  of  subsets  correlates  to  the  actual  computation.  When  the 
difference between the average trace of the two subsets is plotted, there will be a 
statistically  significant  peak  where  the  target  bit  has  an  effect  on  power 
consumption.  Measurement  errors  and  power  consumption  due  to  other 
operations on the chip are uncorrelated.

Figure 5 shows four traces from a DPA attack on a smartcard running DES. 
On top is the reference power trace (as in SPA).  The three traces below this are 
differential traces computed as described above, from two subsets formed by a 
guess of subkey bits.  Of these three guesses, the first is correct and the other 
two are incorrect.  From only 1000 samples and even without further statistical 
processing, the signal (correct guess) stands out among the noise.

Figure 5: DPA traces against top reference, showing one 
correct guess out of three (source: Kocher et al, 1999)



Once the attacker learns one part of the key, they can proceed to testing 
other  parts  of  the  key  or  switch  to  an exhaustive  search  once the  keyspace 
becomes feasibly small.  This type of attack is particularly potent because, other 
than some basic knowledge of the encryption algorithm, the attacker requires 
little  or  no knowledge of the target implementation.   A search for  correlation 
between power traces and internal data can be automated, and more samples 
can always be taken to compensate for noise or measurement error.

2.1.3. Side-channel attacks: Electromagnetic analysis

While power analysis attacks (SPA and DPA) are based on measured power 
consumption,  electromagnetic  (EM)  attacks  are  based  on  measured 
electromagnetic  signals  due  to  currents  flowing  in  microelectronics.  Once  the 
measurement is acquired, the types of attacks are very similar to power analysis 
attacks and can generally be called Simple Electro-Magnetic Analysis (SEMA) and 
Differential Electro-Magnetic Analysis (DEMA).

There  are  some  notable  differences  between  power  and  EM  attacks, 
however.  While power analysis is generally limited to measurements of overall 
device power consumption, electromagnetic analysis can target specific areas of 
the chip by positioning a small antenna.  EM attacks can also be carried out by an 
attacker that is far from the hardware, meaning physical access it not strictly 
required. Early attacks could use simple AM demodulators even a few meters 
away from the chip, for instance.

On  the  other  hand,  without  the  luxury  of  direct  probes  connected  to 
physical wires, EM attacks suffer complications due to noise, RF interference, and 
measurement error.

2.2. Fault attacks (semi-invasive)

A variety of fault attacks exist, where some hardware fault (an unexpected 
condition  or  defect)  leads  to  a  processing  mistake  that  is  beneficial  to  the 
attacker.  Fault  attacks  might  overlap  with  physical  tampering.  Methods  of 
inducing faults include: supplying noisy power or clock signals, incorrect voltage, 
excessive temperature, radiation or high energy beams such as UV, laser, etc.

Some  algorithms  are  particularly  vulnerable  to  hardware  faults.   For 



instance, an RSA implementation using the Chinese Remainder Theorem (CRT) 
has  frequently  been  the  target  of  experimental  fault  attacks.  If  a  smartcard 
computes an RSA signature modulo n = p*q by first computing it modulo p and q 
separately and then using CRT to combine the results, the overall computation 
depends critically upon the sub-computations.  If there is a computational error in 
either, an attacker can then easily factor n and compromise the private key.

If  e is  the  public  exponent,  and  the  generated  RSA  signature 
S=M d mod pq is correct modulo p but incorrect modulo q due to a hardware 

fault, then the attacker can compute p=gcd n ,Se−M 

Two other practical fault attacks are described below.

Pay-TV  smartcard  attack:  The  CPU  can  be  made  to  execute  wrong 
instructions by applying a rapid transient to the clock or power supply.  A portion 
of code is targeted; in the example described by Anderson and Kuhn, the critical 
code is a loop which writes the content of a limited memory range to the serial 
port.  Systematically, faults are introduced until the CPU fails to properly execute 
a conditional branch.  As a result, the entire contents of memory can be dumped 
to the serial port, allowing an attacker to learn all smartcard contents.  This is an 
interesting demonstration of inducing errors in instruction code, rather than data.

Attacks on DES: If the attacker can choose to make a specific instruction 
fail, then the normal execution of DES can be corrupted to the attacker's benefit. 
For  instance,  the  number  of  DES  rounds  can  be  reduced  by  corrupting  the 
appropriate loop variable or conditional jump.  The attacker can then learn the 
DES key by inspection.

2.3. Physical tampering (invasive)

Attacks  that  involve  physical  tampering  are  far  more  invasive  than  the 
previous attacks, and generally require more expensive equipment to carry out. 
Methods  that  involve  probing  the  electronics  of  the  device  first  require  chip 
depackaging, to remove protective layers and gain access to chip internals.  Part 
of the difficulty with any physical attack is determining the precise location of 
important units such as memory, registers, etc.

If many implementation details are known, such as the exact code executed 



by the processor and the location of instructions in ROM, then the behaviour of 
the device can be modified by selectively overwriting the device's ROM.  Using a 
laser  cutter  microscope,  bits  can  be  modified  such that  vital  instructions  are 
altered to produce desirable affects (such as skipping rounds of DES).  In the 
case of EEPROM, two microprobing needles can be used to set or clear a target 
bit.

Another approach is using the above probing tools to modify data, instead 
of code.  Assuming the location of the key is known in EEPROM, the probes can 
still be used to determine the key even if the values can not be directly read.  The 
approach would be to arbitrarily set the first bit to a 1 or 0.  Operating the device, 
the attacker can observe whether the behaviour is the same or different than 
before. If the operation is the same, the key bit was guessed correctly and if the 
operation fails,  the key bit  was the opposite. Setting the key bit  back to the 
correct value and continuing, an attacker can eventually learn the entire key.

Finally, other low-level hardware observation can reveal useful information. 
It turns out that both static and dynamic RAM “remember” values that have been 
stored for a long time, even after power is cut-off (memory remanence).  Even 
though tamper resistant devices might, for instance, cut power when a cover is 
removed it is possible that secret information still lingers in memory cells with 
some probability of a bit being represented correctly.  Since any probabilistic bias 
gives  the  attacker  an  advantage,  even  disabled  and  “cleared”  memory  can 
provide  useful  information.   Anderson  and  Kuhn  describe  a  tamper-resistant 
cryptosystem used in bank ATMs that had this weakness.
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