

Topics in Network Security

Jem Berkes
MASc. ECE, University of Waterloo
B.Sc. ECE, University of Manitoba

www.berkes.ca

February, 2009

Ver. 2

In this presentation
● Wi-Fi security (802.11)
● Protecting insecure channels
● Case study: an insecure application
● How is a computer hacked?

Wi-Fi Security (802.11)

… Wi-Fi Security (802.11) ...
● As with other situations, two attack categories

– PASSIVE: silently listening and reading signals
– ACTIVE: modifying signals or affecting system

● Some threats are more specific to wireless
– Radio jamming and interference
– Unauthorized access or authentication

… Wi-Fi Security (802.11) ...
Passive eavesdropping

– Signals sent through air on public frequencies
– Eavesdrop using any wireless card!

… Wi-Fi Security (802.11) ...

Active attacks
– Many possible scenarios
– e.g. attacker places rogue host onto network

… Wi-Fi Security (802.11) ...
● Various 802.11 security standards
● WEP, WPA, WPA2...
● Your wireless LAN requires a password

– Does that mean it's secure?

… Wi-Fi Security (802.11) ...
● Plenty of attacks are possible and practical
● WEP, Wired Equivalent Protocol (still around)

– RC4 key easily discovered in about 1 minute
● WPA and WPA2, Wi-Fi Protected Access

– Shared passwords under 13 chars breakable
● Brute force speed rapidly improving

– TKIP mode can be broken in a few minutes
● No matter how strong the password

– Might be safe: WPA and WPA2 using AES
● Password must still be very strong

… Wi-Fi Security (802.11) ...
● Horrendous track record for Wi-Fi security

– Latest critical attack published in Nov 2008
– Largely protocol/math flaws, some brute force

● An average wireless LAN is likely insecure
– Home or small office Wi-Fi likely exploitable
– Configuring secure Wi-Fi is very challenging
– Both my D-Link routers malfunction with WPA2

● We should not trust a wireless link for security
● Assume that Wi-Fi is an insecure channel

Protecting insecure channels

Wi-Fi is basically an insecure channel.

Ethernet packets on wired LAN can be sniffed too.

How do you protect data?

… Protecting insecure channels ...
● Two elements to protecting IP traffic

– Encryption (symmetric ciphers like RC4, AES)
– Key exchange (RSA, DSA) and authentication

● Remember: encryption alone is not enough!
● Imagine a criminal sets up a web site that looks

like your bank's, complete with SSL (lock icon)

… Protecting insecure channels ...
● Looks like your bank, looks secure

– It's not hard to run SSL (https)
– Encryption alone is not enough
– They can still steal your password

● The ONLY thing that would alert you to fraud:
– The address isn't your bank web site address
– Or, there is a warning about the certificate

● Certificate is invalid or doesn't match the domain
● Certificate authentication is essential !

– Catches impostors, man-in-the-middle attacks

… Protecting insecure channels ...
● Application layer solution

– Transport Layer Security (TLS), previously SSL
– Encrypts data so that it can not be sniffed
– Also supports checking of certificates

● Digital signature; authenticates identity
– TLS is widely used in “https://” web sites

● A cipher like 128-bit RC4 provides encryption
● Site certificates provide authentication
● Both must be used to achieve security!

… Protecting insecure channels ...
● Tunneling solutions

– IPsec, an OS-based tunnel for IP packets
– Virtual Private Network (VPN) e.g. OpenVPN
– Secure Shell (SSH) tunnel, easy to do

… Protecting insecure channels ...
● Application-layer SSL/TLS is strong enough

– The connection is safe even if the channel is not
● So why do you need tunnels at all?

– Many applications fail to use SSL/TLS
– Others make partial or incomplete use of it

● e.g. Case study, coming up in presentation
– Many https web sites fail to use total SSL/TLS

● They often load images, content from plain http
● Malicious attacks are still possible

– When in doubt, safer to use tunnel for all traffic

… Protecting insecure channels ...
● SSH tunnel is easy using OpenSSH software
● ssh -L 1234:google.com:80 user@host

– Opens ssh connection to host and logs in user
– Forwards local port 1234 to google.com port 80
– You can load http://127.0.0.1:1234 in browser
– Your IP address does not connect to google
– Instead, your traffic is encrypted over to host
– The ssh host is the one contacting google.com

… Protecting insecure channels ...
● ssh -D 1234 user@host

– Open ssh (secure) connection to trusted host
– Establishes a SOCKS proxy over ssh tunnel
– In web browser, set proxy to 127.0.0.1:1234
– All web traffic will be tunneled through host
– That host opens new connections on demand

● Your IP doesn't make TCP connections to sites
– All traffic is encrypted before leaving your IP
– Traffic leaving the ssh host can still be sniffed

Case study: an insecure application
● Real example: software from financial company
● Communicates very sensitive financial data
● Supposedly uses SSL, should be safe?

– Turns out unencrypted data can still be sniffed
– Failure to check certificates, so MITM possible

...Case study: insecure application...
● How to investigate?
● First step: capture packets

– e.g. tcpdump on Linux, unix
– Wireshark (used to be Ethereal)

● Capture ethernet traffic while doing “SSL login”

...Case study: insecure application...
● First thing I notice: some http connections

– Application makes an http (not encrypted)
connection to check for latest version.
Wireshark decodes the http request.

...Case study: insecure application...
● This request over the web is not encrypted, and

neither is the reply (it is not SSL)
● Notice that this is a potential attack vector

– An attacker could redirect this http to himself
– Could interfere with application's mechanism to

check its version and capabilities
– Is this a threat? Very possibly.

● In any case, this connection should be over
SSL/TLS. The software is in “SSL mode” !

...Case study: insecure application...
● Second connection seen: tcp port 8001 (means

nothing), but cleartext ASCII data is visible
● The data being received from the server looks

like a TLS certificate which is likely part of the
negotiation at the start of SSL/TLS

...Case study: insecure application...
● In Wireshark, select only this port traffic by

using display filter: tcp.port == 8001
● The rest of the packets all contain unreadable

binary data (encrypted?). This is good news.
● It does appear that this port 8001 traffic is the

SSL traffic which the application claims to use.
This is an educated guess.

...Case study: insecure application...
● But there are further TCP/IP connections to

inspect: port 8000. Again tell Wireshark to use
display filter: tcp.port == 8000

● This is where things get ugly...
● Virtually all of these packets contain readable

ASCII data. It is definitely not encrypted, and
there is no sign of a certificate.

● Some of the visible (sniffable) data is financial
in nature. It's not private, but it is definitely
financial and definitely in the clear.

...Case study: insecure application...
● Wireshark even identifies it as “Financial

Information eXchange Protocol” and a user
name is readable!

● This user name is, in fact, transmitted many
times in the clear... something that should never
happen when we are expecting “SSL” mode!

...Case study: insecure application...
● One of the packets contains something truly

interesting; user name (in the clear) combined
with what looks like the hash of the password.

● The word SHA-1 appears; this is a hash
algorithm and the hexadecimal ASCII format
data dump looks a lot like a hash output.

...Case study: insecure application...
● We take an educated guess that the application

is transmitting the hash of the password
● Transmitting the hash of a password is safer

than sending the password in the clear;
however, it can still be a bad idea.

● Depending on implementation, this kind of data
could be abused by an attacker or even used to
gain account privileges.

...Case study: insecure application...
● What some simple packet dumps have showed:

– While one connection is in fact SSL/TLS, other
non-SSL connections are made too

– Those unprotected connections contain
sensitive data, including user names. The
password may be compromised too.

– All the unencrypted connections have no
certificate and could be spoofed, or attacked
by a man-in-the-middle (MITM)

– The software is misleading people if they
presume it is SSL enabled and secure.

...Case study: insecure application...
● Keep in mind, this particular software is used by

many people from a major financial company.
● What we can learn from this case study:

– Even “SSL-enabled” software can make poor
use of SSL/TLS and send insecure data

– Every connection should use TLS and check
certificates; nothing short of this is acceptable

– Software shouldn't rely on home-grown security
mechanisms. Use a reliable layer like TLS.

– Assume the IP network is insecure; it often is.
– Sensitive programs shouldn't be used on Wi-Fi

...Case study: insecure application...
● Actually getting hacked is an unlucky

combination of network circumstances and
software/hardware circumstances

How is a computer hacked?
● Many scenarios, we will focus on one:

– Computer connected to a network (victim)
– External attacker also has access to network

● This could be the Internet, or just a LAN
● i.e. could be bad guy using Wi-Fi on your LAN
● Or could be a bad student at the university

– External attacker knows nothing about victim
– Attacker wants to gain access, somehow

… How is a computer hacked? ...
● Attackers typically want to know what services

this victim has (what IP ports are reachable)
● The “nmap” tool can scan for open IP ports
● This is of interest, because network services

often have exploitable bugs
● Those exploits vary greatly on specific cases

… How is a computer hacked? ...
● Sample nmap scan output on Windows host
● This victim has open RPC (remote procedure

call) and NetBIOS ports, among others

… How is a computer hacked? ...
● Each open port represents a service running on

the victim computer
● Most services have vulnerable versions
● Search of “windows critical rpc” brought up

– Microsoft Security Bulletin MS08-067 – Critical
● “The vulnerability could allow remote code

execution if an affected system received a
specially crafted RPC request.”

– Describes an RPC flaw reported October 2008
● If the victim did not update the OS to patch this

RPC vulnerability, they are likely exploitable.

… How is a computer hacked? ...
● Many computers run older operating systems

and have components that are out of date
● Attacks are not Windows-specific
● Linux, FreeBSD, etc. hosts also run services

– A host with vulnerable services can be hacked
● The actual exploits usually circulate on the

Internet and can do a variety of things
● Typically, an attacker wishes to run a custom

program to gain some form of access/control

… How is a computer hacked? ...
● How to minimize risk of getting hacked:

– Close unnecessary services (ports). Each open
service is a potentially vulnerable entry point.

– Keep software up to date, especially the
operating system and services.

– Restrict access to ports from the outside world,
using a firewall.

